Loss of exon identity is a common mechanism of human inherited disease.
نویسندگان
چکیده
It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.
منابع مشابه
RET proto-oncogene mutations in the diagnosis of medullary thyroid cancer: a review article
Medullary thyroid cancer accounts for 5-10% of thyroid carcinomas. RET proto-oncogene mutations occur in all of the hereditary MTCs and about 66% of the sporadic MTCs. So, the detection of the RET mutations is necessary for rapid and proper diagnosis and treatment. This systematic review seeks to find a comprehensive list of RET gene mutations in the diagnosis of medullary thyroid cancer. The ...
متن کاملGenetic Variations in Exon 3 of VWF Gene in Patients with Von Willebrand Disease (VWD) from South-West Iran
Abstract Background Von Willebrand disease (VWD) is an autosomally inherited bleeding disorder with the prevalence of 1% based on population studies. The disease phenotype is due to quantitative and structural/functional defects in Von Willebrand Factor (VWF) which is a glycoprotein with essential role as a carrier of FVIII in circulation and also it serves the function as hemostasis regulato...
متن کاملMutation Identification in Exon 10 of SLC26A4 Gene in Individuals with Hearing Loss in Guilan Province
Introduction: Mutation in SLC26A4 gene is one of reason of syndromic and non-syndomic hearing loss. Mutation in this gene is reported to be the second most common cause of deafness in the worldwide, after GJB2 gene. The aim of this study was to evaluate mutations in exon 10 of SLC26A4 gene in individuals with hearing loss in Guilan province. Materials and Methods: In this descriptive cross-sect...
متن کاملHair Shaft Abnormality in Children: a Narrative Review
Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We condu...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2011